
PHYSICAL REVIEW B 108, L081108 (2023)
Letter

Generalized Wiedemann-Franz law in a two-site charge Kondo circuit:
Lorenz ratio as a manifestation of the orthogonality catastrophe
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We show that the transport integrals of the two-site charge Kondo circuits connecting various multichannel
Kondo simulators satisfy the generalized Wiedemann-Franz law with the universal Lorenz ratios all greater
than 1. The magic Lorenz ratios are directly related to the Anderson’s orthogonality catastrophe in quantum
simulators providing some additional universal measure for the strong electron-electron correlations. We present
a fullly fledged theory for the magic Lorenz ratios and discuss possible routes for the experimental verifications
of the theory.

DOI: 10.1103/PhysRevB.108.L081108

Introduction. Anderson’s orthogonality catastrophe (OC)
[1] describes an effect of a local perturbation on a gas of N
fermions. To screen the local impurity potential, the quantum
many-body states change in such a way that a new state
becomes orthogonal to the ground state of the system in the
N → ∞ thermodynamic limit. The OC plays an important
role in the understanding of problems associated with a sud-
den (at time t = 0) excitation of a core electron in an atom (the
so-called x-ray edge or Mahan’s singularity [2–5]) and Kondo
problem [6,7] as well as many other topics of theoretical and
experimental relevance. Typically, OC is manifested in certain
power-law dependencies of quantum correlators (response
functions) as a function of energy, frequency, or temperature
(e.g., local density of states, x-ray absorption rate, etc.) di-
rectly measured experimentally. Moreover, the physics behind
OC is crucial for a description of the many-body systems’ dy-
namics and physics of quantum quenches [8,9]. In particular,
as it was shown recently in Ref. [8], the dynamics of OC is
fully characterized by the quantum speed limit. The ultracold
atomic gases Ramsey-interference-type experiments with the
impurity atoms [9] allow one to study the OC in the time
domain complementary to the radio-frequency spectroscopy
probes of the OC in the frequency domain [9].

The OC in strongly correlated condensed matter systems
impacts the quantum thermodynamic quantity known as a
Wilson ratio (WR) [7]. The WR for the quantum system is
defined as the ratio of a susceptibility increment δχ/χ to a
specific heat increment δC/C:

RW = δχ/χ

δC/C
. (1)

The WR of the ideal Fermi gas is RW = 1 while, e.g., for the
quantum impurity single-channel Kondo effect RW = 2 being
enhanced by the ratio of the total specific heat to that coming
from the spin degrees of freedom [10]. In general, the the WR
depends on the number of the scattered channels and the spin
of the impurity [10] and provides an important measure for
the effects of strong electron-electron correlations.

In this Letter we present some arguments in favor of obtain-
ing information about OC in nanodevices and quantum sim-
ulators directly from two quantum transport low-temperature
measurements. We argue that the Lorenz ratio RL

RL · L0 = K
GT

(2)

[here L0 = (kB/e)2π2/3 is a Lorenz number, e is the elec-
tron’s charge, and kB is Boltzmann’s constant] is a universal
proportionality coefficient between two quantum transport
correlation functions: the thermal K and electric G conduc-
tances can also be used as a measure for the strong interaction
effects. We show that RL is directly related to the OC physics
uniquely characterizing the strongly correlated operational
regimes of the quantum simulators.

Two-site Kondo simulators were theoretically proposed
by the authors of Ref. [11] to investigate competing phases
associated with Fermi and non-Fermi liquid behavior in dif-
ferent sides of the circuit and its interplay in the quantum
charge and heat transport. The idea is to engineer states in
a single-site part of the simulator [12,13] by fine-tuning it
to a particular regime of a multichannel charge Kondo effect
[14–16]. Finally, two parts are to be connected through either
a tunnel barrier or a single mode quantum point contact (QPC)
to make the circuit operating in different modes of the strongly
correlated quantum simulators.

The single-site charge Kondo circuit is fabricated out of
semiconductor heterostructure in an integer quantum Hall
regime [12,13]. The edge states form a Luttinger liquid, while
almost transparent QPCs act as point-like quantum impuri-
ties. The large metallic island (quantum dot, QD) provide a
mesoscopic charge quantization [17]. Adding several QPCs
to the circuit is equivalent to creating new Kondo channels.
Fine-tuning QD to a special charge degeneracy point at the
Coulomb peaks allows to treat the two-fold degenerate charge
states as a pseudospin and describes the circuit by the multi-
channel Kondo model. The direct manifestation of the two-
and three-channel Kondo physics in the single-site Kondo
simulators was reported in Refs. [12,13].
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FIG. 1. Cartoon for the two-site Kondo circuit proposed for the
measurement of the charge and heat transport coefficients. Two
parts of the circuit fabricated out of 2DEG (orange and blue zones)
consisting of quantum point contacts (bottleneck areas) attached to
two quantum dots (hatched area inside the circles) are connected
through the central tunneling area (dashed lines). The yellow plunger
gate is used to control a mesoscopic Coulomb blockade in the QD.
The tunnel contact is adjusted by the gate (green boxes). For the
illustration of the model connecting N- and M-channels Kondo sim-
ulators we show the left (hot, orange) part of the circuit with N = 3
QPCs at temperature T1 and the right (cold, blue) part of the circuit
with M = 2 QPCs being at temperature T2 < T1. The red lines with
arrows along the painted areas denote the integer quantum Hall ν = 1
edge states. The bold up/down arrows indicate different pseudospin
quantum number outside/inside the quantum dot. The magic Lorenz
ratio (17) for this setup R = 15/7.

The first experimental realization of the two-site Kondo
circuit was done very recently in Ref. [18], triggering an
immediate interest of the theoretical community. In addition
to the quantum critical phenomena being a focal point of
Ref. [18], interesting questions about emerging para-fermions
[19,20] characterized by fractional residual entropy and frac-
tional charge were raised [19–21]. Very recently, it was
suggested to use the charge Kondo simulators for direct ob-
servation of the Kondo impurity state and universal screening
by using the charge pseudospin state [22] and also probing
single-electron scattering through a non-Fermi liquid charge-
Kondo device [23]. We present some arguments about using
quantum heat and charge transport coefficients for shedding
new light on the behavior of Kondo simulators.

Model. In this Letter we consider a two-site Kondo circuit
[11] schematically illustrated by Fig. 1. The circuit consists
of two parts fabricated out of the two-dimensional electron
gas (2DEG) (orange, hot at a temperature T1 and chemical
potential μ1 and light blue, cold at the temperature T2 < T1

and chemical potential μ2) connected through a tunnel contact
(dashed lines.) The temperature drop �T = T1 − T2 and the
voltage drop �V = (μ1 − μ2)/e occur across the tunnel bar-
rier. Both parts of the circuit contain QPC (bottleneck areas)
and QD (hatched areas inside the big circle). We assume
that the 2DEG is in the integer quantum Hall (IQH) regime
with ν = 1. The red line denotes the edge state. Each QPC is
fine-tuned to a low-reflection (high transparency) regime.

The effective model [24–26] contains a Gaussian part
described by the action S = ∑

i=1,2(S(i)
0 + S(i)

C ) (index i = 1
stands for the left part of the circuit containing m1 = N quan-
tum point contacts (QPC) and i = 2 used for the right part of
the circuit with m2 = M QPCs). The free Euclidean (imagi-
nary time) action

S(i)
0 = vF

2π

mi∑
α=1

∫ β

0
dt

∫ ∞

−∞
dx

[
(∂tφα )2

v2
F

+ (∂xφα )2

]
, (3)

represents the bosonized noninteracting fermions [27]
[φα (x, t ) are bosonic fields] in the constriction α = 1, . . . , mi,
vF is a Fermi velocity, and β = 1/T is an inverse temperature
(we adopt the notations h̄ = kB = e = 1) [28]. The action S(i)

C

S(i)
C (τ ) =

∫ β

0
dtE (i)

C

[
nτ (t ) + 1

π

mi∑
α=1

φα (0, t ) − Ni
(
V (i)

g

)]2

(4)

accounts for the mesoscopic Coulomb blockade [17] in the
metallic left/right QDs characterized by the charging energies
E (i)

C . Here Ni(V (i)
g ) are the dimensionless parameters con-

trolled by the gate voltages V (i)
g and nτ (t ) = θ (t )θ (τ − t ) is

a function counting the number of electrons entering the QDs
area. θ (t ) is a Heaviside (step) function.

The backscattering action in the left/right parts of the
circuit is given by the boundary sine-Gordon model

S(i)
bs = −D

π

mi∑
α=1

|rα|
∫ β

0
dt cos [2φα (0, t )]. (5)

Here |rα| are reflection amplitudes of α-QPCs, D is a band-
width (ultraviolet cutoff of the theory). As the QPCs do not
talk to each other, we introduce independent one-dimensional
coordinate systems (xα axes) for each QPC separately (see
Fig. 1).

Two circuits are connected through the tunnel contact
(dashed lines in the center of Fig. 1). The corresponding
tunnel action is given by

S(12)
tun = −

∫ β

0
dt[t12̄1(−∞, t )2(−∞, t ) + H.c.]. (6)

The operators i(x = −∞, t ) denote the fermions in the QDi
at the position of the left/right side of the tunnel contact.

Transport integrals. The charge current Ie and heat current
Ih depend on the temperature drop �T and voltage drop �V
across the tunnel barrier [32,33]. Assuming the linear re-
sponse if both [�T,�V ] � T we define the coupled transport
equations as (

Ie

Ih

)
=

(
L11 L12

L21 L22

)(
�V
�T

)
. (7)

The diagonal coefficients of the matrix L are defined as

G = L11 = ∂Ie

∂�V

∣∣∣∣
�T =0

, GH = L22 = ∂Ih

∂�T

∣∣∣∣
�V =0

, (8)
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and the off-diagonal coefficients are given by

GT = L12 = ∂Ie

∂�T

∣∣∣∣
�V =0

= 1

T

∂Ih

∂�V

∣∣∣∣
�T =0

= L21

T
. (9)

The thermoelectric power (thermopower, Seebeck coefficient)
S and thermal conductance K are defined at zero-electric-
current state Ie = 0 as

S = − �V

�T

∣∣∣∣
Ie=0

= GT

G
, (10)

and

K = ∂Ih

∂�T

∣∣∣∣
Ie=0

= detL
L11

= G · T

[
GH

G · T
− S2

]
. (11)

The Wiedemann-Franz (WF) law [32,33] establishes a con-
nection between the thermal conductance K and electrical
conductance G through a universal constant, the Lorenz
number K/(GT ) = L0 = π2/3. The validity of WF law is
attributed to the fact that both charge and heat are transferred
by the same quasiparticles. The deviation from the relation
K/(L0GT ) = 1 is sometimes called “violation of the WF
law.” In this Letter we show that the WF law can be under-
stood in more general terms while the fundamental constant
does not necessarily coincide with L0.

To proceed with the calculation of the charge and heat
transport through the two-site Kondo circuit we define trans-
port integrals (see [33,35])

Ln(T ) = 1

4T

∫ +∞

−∞
dε

εn

cosh2 (ε/2T )
T (T, ε), n = 0, 1, 2,

(12)

where we denote by T (T, ε) a transmission coefficient

T (T, ε) = 2π |t12|2ν1(ε, T )ν2(ε, T ). (13)

Here the local densities of state (DoS) νi(ε, T ) at the position
of the tunnel barrier are given by

νi(ε, T ) = − 1

π
cosh

(
ε

2T

) ∫ ∞

−∞
Gi

(
1

2T
+ it

)
eiεt dt . (14)

The DoS are defined in terms of the electron’s Green’s func-
tions Gi(τ ) = −〈Tτi(−∞, τ )̄i(−∞, 0)〉 where Tτ is the
imaginary time-ordering

Gi(τ ) = − ν
(i)
0 πT

sin (πT τ )
Ki(τ ), (15)

and ν
(i)
0 are bare (nonrenormalized) DoS in QDi. The correla-

tors Ki(τ ) account for the effects of interaction in the left/right
parts of the Kondo circuit and are computed, e.g., by using
the bosonization technique [27]. The connections between
the transport integrals (12) and kinetic coefficients (7) are as
follows: L11 = L0, L12 = −L1/T , and L22 = L2/T .

The Lorenz ratio RL(T,N1,N2) has the following defini-
tion in terms of the transport integrals:

RL(T,N1,N2) = 3

(πT )2

[
L2

L0
−

(L1

L0

)2
]
. (16)

There are two contributions to RL(T,N1,N2) which behave
differently at low and high temperatures

RL(T,N1,N2) = R(T,N1,N2) − 3

π2
S2(T,N1,N2). (17)

One is R(T,N1,N2) = 3/(πT )2(L2/L0) and the other
one is proportional to the square of the thermopower
S(T,N1,N2) = L1/(T · L0). Both contributions depend on
the temperature T and the dimensionless gate voltages Ni.
The Wiedemann-Franz law constitutes RL = R = 1 at all
temperatures and all gate voltages. Strictly speaking, this law
is not satisfied exactly at any given set of parameters and
therefore is always violated. However, we can adopt a more
general definition of the WF law, for KC, namely, if there
exists some parametric region of the temperatures and gate
voltages at which the main contribution to RL is given by
a universal constant and the nonuniversal corrections to it
are controllably and vanishingly small, we conclude that the
generalized WF law is satisfied. The question of whether the
generalized WF law is violated or not is therefore reformu-
lated as a problem of computing RL and finding out whether or
not it acquires some nontrivial value. Besides, if this nontrivial
value is different from unity, it is interesting and impor-
tant to know what kind of useful information the WF law
conveys.

Let us first summarize the key equations for the transport
integrals in terms of the correlators Ki [11]:

L0(T ) = gC

2

∫ ∞

−∞

dz

cosh2 z
K+

1 (z, T ) · K−
2 (z, T ), (18)

where gC = 2πν
(1)
0 ν

(2)
0 |t12|2 is a conductance of the cen-

tral tunnel area. We denote kernels K±
i (z, T ) = Ki[(π/2 ±

iz)/(πT )] obeying obvious symmetry property K±
i (−z, T ) =

K∓
i (z, T ). Here z = πT t is a dimensionless time. We ex-

plicitly assume an additional temperature dependence of the
prefactors of the kernels Ki (see discussion below).

The equation for L1(T ) is written as follows [11]:

L1 = i(πT )
gC

4

∫ ∞

−∞

dz

cosh2 z
W [K+

1 (z, T ), K−
2 (z, T )],

(19)

in terms of the Wronskian of two kernels

W [K+
1 K−

2 ] =
∣∣∣∣ K+

1 (z, T ) K−
2 (z, T )

∂zK
+
1 (z, T ) ∂zK

−
2 (z, T )

∣∣∣∣. (20)

If the particle-hole (PH) symmetry in two-site Kondo circuit
holds, both kernels K±

1 and K∓
2 are even functions of z (for

a symmetric Kondo circuit kernels are linear dependent). As
a result, both the L1 coefficient and thermopower vanish.
However, the backscattering (5) breaks the PH symmetry
and therefore leads to the finite value (at finite tempera-
ture and certain parametric region of the gate voltages) of
the Seebeck coefficient S . We note that the smallness of
this coefficient is controlled by the smallness of the PH
symmetry-breaking parameter. The PH symmetry is protected
both at Coulomb valleys (integer N ) and Coulomb peaks
(half-integer N ) where thermopower is exactly zero. In addi-
tion, the thermopower vanishes at the low-temperature regime
[33]. Indeed, exact calculations for the m2 = M = 1 channel
charge Kondo circuit setup in contact with the normal metal
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TABLE I. Magic Lorenz ratios R for the two-site Kondo circuit
connecting N- and M-channel Kondo simulators operating in either
Fermi or non-Fermi liquid regimes from Eq. (26). The last three
columns show the temperature dependence of the diagonal transport
integrals L0 ∝ A1 · A2 and L2 ∝ A1 · A2 · T 2 [see Eqs. (23) to (25)]
and thermopower at low temperatures. Results marked by � were
reported in Ref. [38]. Mark � refers to the perturbative results [21].

N M R L0 L2 Smax

1 1 27/7 T 4 T 6 T
1 2 3 T 3 T 5

√
T ln T

1 3 45/17 T 8/3 T 14/3 3
√

T ln T �

1 ∞ 9/5� T 2 T 4 T
2 2 12/5 T 2 T 4 T
2 3 15/7 T 5/3 T 11/3 3

√
T ln T �

2 ∞ 3/2� T T 3
√

T ln T
3 3 25/13 T 4/3 T 10/3 3

√
T ln T �

3 ∞ 15/11 T 2/3 T 8/3 3
√

T ln T �

∞ ∞ 1 T 0 T 2 0

(m1 = N = ∞) predict [24] for the amplitude of the Seebeck
coefficient oscillations Smax ∝ T/E (2)

C while for M = 2 ther-

mopower Smax ∝
√

T/E (2)
C ln(E (2)

C /T ) [24] (see Table I). The
perturbative (in terms of the small backscattering amplitudes
|rα| � 1) calculations for the M > 2, N = ∞ Kondo cir-

cuits result in Smax ∝ 3

√
T/E (2)

C ln(E (2)
C /T ) [21]. We therefore

conclude that the thermopower contribution to the Lorenz
ratio R vanishes at sufficiently low temperatures T � E (i)

C
independently on imposing the particle-hole symmetry and
therefore can be disregarded at that limit. It is sufficient for the
verification of the WF law to compute the values of both L0

and L2 at the PH-symmetric point assuming all |rα| = |r| = 0.
Since the amplitude of the mesoscopic Coulomb blockade os-
cillations is proportional to |r| [17], the limit |r| → 0 washes
out completely the Ni dependence of the Lorenz ratio. It is
sufficient therefore to measure the electric and the thermal
conductances at T � E (i)

C close to Coulomb peaks [34] to
verify the predicted magic Lorenz ratios.

The L2 transport coefficient is written in terms of dimen-
sionless time integrals as follows [35]:

L2(T ) = (πT )2 · gC

2

∫ ∞

−∞
dz

(2 − cosh2[z]) · K+
1 (z, T ) · K−

2 (z, T ) + cosh2[z] · ∂zK
+
1 (z, T ) · ∂zK

−
2 (z, T )

cosh4[z]
. (21)

Results and discussion. As only the charge mode φc(0, t ) =
1/

√
mi

∑mi
α=1 φα (0, t ) enters the Coulomb blockade action

(4), the PH-symmetric part of the kernels Ki can be obtained
from the mi = 1 result (see Ref. [16]) by doing a simple
rescaling E (i)

C → mi · E (i)
C , nτ → nτ /

√
mi, and Ni → Ni/

√
mi

(see details of the derivation in Ref. [24] and also in the
Supplemental Materials of Ref. [21]). Evaluating the Gaussian
action S(i)

0 + S(i)
C (3) and (4) with the saddle point method

[24] and computing the fluctuations around the saddle point
similarly to that found inf Ref. [24] we obtain

ln K±
i (τ )|r=0 = −2E (i)

C T
∑
ωn

[1 − cos ωnτ ]e−|ωn|/D

|ωn|
(|ωn| + miE

(i)
C /π

)
≈ 2

mi
ln

(
π2T

miγ E (i)
C | sin[πT τ ]|

)
. (22)

Here we perform a summation over bosonic Matsubara
frequencies ωn = 2πT n assuming the limit τ � [E (i)

C ]−1. De-
tails for similar calculations of Matsubara sums can be found
in Refs. [16,21,24]. Applying simultaneously a shift trans-
formation and a Wick rotation from imaginary to real time
τ → 1

2T + it we finally get

K±
i (z, T )|r=0 = Ai(T )

cosh2/mi [z]
, Ai(T ) =

(
π2T

γ E (i)
C mi

)2/mi

.

(23)

Here γ = eC and C = 0.577 is the Euler’s constant. Equa-
tion (23) is the central point for the calculation of the Lorenz
ratio. In particular, the power-law behavior of the kernel
leads to some particular temperature behavior of the elec-

tric conductance attributed to the Anderson’s orthogonality
catastrophe. For example, if m1 = ∞ and m2 = M the con-
ductance scales as G ∝ T 2/M . The explanation of this behavior
for a particular case M = 2 and its connection to the An-
derson’s orthogonality catastrophe was given in a seminal
Matveev-Furusaki (MF) paper [16]. Assuming that the left
and the right parts of the two-site charge Kondo circuit are
separated by the tunnel barrier and therefore can be treated
independently as an electron losing its coherence, we sketch
the MF arguments (for the sake of the reader’s convenience)
for an arbitrary value of Kondo channel’s number M � 2. As
the charge fluctuations are not suppressed below the energies
E (2)

C , one can interpret the effects of charging energy as a
hard-wall boundary condition for the wave function. When
the electron tunnels through the barrier from the left part of
the Kondo circuit (KC) (let us call the left part of the circuit
a “lead” for the right part of KC), the charging energy of the
KC is lowered by moving one electron through the right part
containing M identical QPCs. Therefore, each mode (QPC)
transfers q = ±e/M charge (we consider both the electron’s
and hole’s transport). The Friedel’s sum rule tells that the cor-
responding phase shifts are δ = ±π/M. The sudden change of
the boundary condition is accompanied by the large number of
the electron-hole pair excitations and results in a creation of
a new state which is almost orthogonal to the ground state of
the system. The orthogonality leads to a suppression of the
tunneling density of states (14) ν(ε) ∝ εχ where, according
to Friedel’s sum rule, χ = ∑

(δ/π )2 and the sum is taken
over all modes. The total number of the modes is n = 2M
(M modes in the dot and M modes in the lead). As a result,
χ = 2M/M2 = 2/M and therefore ν2 ∝ ε2/M which leads to
corresponding temperature scaling of the transport coefficient
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L0 [16]. The temperature scaling of L1 is determined by the
transport integral containing ε · ν2(ε) ∝ ε1+2/M (12) and for
L2, corresponding equation (12) contains ε2 · ν2(ε) ∝ ε2+2/M .
The same arguments can be repeated for the left part of the KC
containing N-independent QPCs and treating the right part as
a contact. The OC results in ν1 ∝ ε2/N .

To compute the ratio L2/L0, we ignore the exact form of
the temperature-dependent prefactor in Ki (23) which will be
canceled out and obtain for L0:

L0 = A1 · A2
gC

2

∫ ∞

−∞

dz

cosh2+2/N+2/M [z]
. (24)

A similar procedure is applied for the calculation of L2:

L2

(πT )2
= A1 · A2

gC

2

∫ ∞

−∞

(
2 − cosh2[z] + 4 sinh2[z]

NM

)
cosh4+2/N+2/M[z]

dz.

(25)

Substituting these functions to Eq. (17), omitting vanishing at
the T � E (i)

C term S2, and disregarding the weak nonuniversal
gate-voltage-dependent corrections we finally get RL(T →
0) = RN,M , where

RN,M = 1 + 4

(
1

M
+ 1

N
+ 3

MN

)[
2F1

(
1,−2 − 1

N − 1
M , 2 + 1

N + 1
M ,−1

) − 1
]
�

(
3
2 + 1

N + 1
M

)
√

π�
(
3 + 1

N + 1
M

) , (26)

here 2F1(a, b, c, z) is a hypergeometric function, �(z) is Eu-
ler’s gamma function. It directly follows from Eq. (26) that
the maximal value of Rmax = 27/7 is achieved at N = M = 1
when the orthogonality catastrophe leads to the maximal sup-
pression of the density of states. This value is quite close to the
absolute upper bound Rub = 21/5 obtained in Ref. [36]. The
upper bound [36] is obtained assuming that the system mod-
eled by the scattering theory and the transmission coefficient
is merely energy dependent, the temperature comes solely
from the Fermi function [36]. The orthogonality catastrophe
results in a specific temperature scaling of the transmission
coefficient (13) T (T, x = ε/T )|r=0 ∝ T

2
N + 2

M fNM(x) which
vanishes at T → 0 limit. Here fNM(x) is some function de-
pending on the number of channels and dimensionless energy
x [37]. Therefore, the upper bound Rmax = 27/7 represents
the maximal value of the Lorenz ratio for the non-Fermi liquid
transmission coefficient. Interestingly, the Lorenz ratio pro-
vides a unique benchmark for the orthogonality catastrophe.
The values of R are different even when the temperature
dependence of L0 and L2 are the same for different two-site
Kondo circuits (compare, e.g., N = 1, M = ∞, and N = M =
2; see Table I).

Expanding the general equation for R (26) for the large
values of N and M we obtain [39]

RN,M |N�1,M�1 = 1 + 4

3

(
1

N
+ 1

M

)
− 8

9

(
1

N
− 1

M

)2

+ 4

9

1

NM
+ · · · , (27)

and therefore conclude that the Lorenz ratio R is bounded
from below by its minimal value Rmin = 1 constituting the
conventional Wiedemann-Franz law. Is R always different
from unity in the strongly correlated systems? In fact no. We
discussed the behavior of transport integrals in the simulator
where both electric conductance G and ratio K/T vanish at
low temperatures. We argue that, in contrast to the statement
of the authors of Ref. [40], the value of the Lorenz ratio R

is universal due to the orthogonality catastrophe despite the
vanishing of G and K/T . If, however, both quantities remain
finite at the T → 0 limit (which can be true both in Fermi
and non-Fermi liquid regimes, see Refs. [40,41]), the WF law
is satisfied for the noninteracting leads with the Lorenz ratio
R = 1 [40,41]. The power-law or logarithmic temperature
non-analyticity of the transmission coefficient close to a crit-
ical non-Fermi-liquid intermediate coupling fixed point [41]
only results in vanishing at low-temperature/energy correc-
tions to the Lorenz ratio. It is worth mentioning that the effects
of interaction in quantum wires (leads) attached to the nanode-
vices (e.g., mesoscopic islands hosting local modes [42,43])
results in a deviation from conventional WF law. In that case
the proportionality coefficient (Lorenz ratio) provides some
important information about the effects of interaction in the
quantum wires.

Conclusions. Summarizing, we check the validity of the
Wiedemann-Franz law in the two-site Kondo circuits. The
circuits consist of two Kondo simulators operating either in
strongly correlated Fermi or the non-Fermi liquid regimes.
The two parts of the circuit are connected by the tunnel
contact. It is shown that the proportionality between thermal
and charge conductances holds even for the case of strong
electron-electron correlations. The transport integrals satisfy
the generalized Wiedemann-Franz law at low temperatures
with the magic Lorenz ratios which are always greater than
1. The magic Lorenz ratios contain some important infor-
mation about the Anderson’s orthogonality catastrophe and
provide a number of benchmarks for the unique charac-
terization of the two-site Kondo circuit operational regime.
The “two-islands” experimental setups [18] can be directly
used for verification of the generalized WF law and OC
predictions.
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